Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image.
In biochemistry it involves adding a class-specific (DNA, proteins, lipids, carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. It is similar to fluorescent tagging.
Stains and dyes are frequently used in biology and medicine to highlight structures in biological tissues for viewing, often with the aid of different microscopes. Stains may be used to define and examine bulk tissues (highlighting, for example, muscle fibers or connective tissue), cell populations (classifying different blood cells, for instance), or organelles within individual cells.
Biological staining is also used to mark cells in flow cytometry, and to flag proteins or nucleic acids in gel electrophoresis.
Staining is not limited to biological materials, it can also be used to study the morphology of other materials for example the lamellar structures of semicrystalline polymers or the domain structures of block copolymers.
In biochemistry it involves adding a class-specific (DNA, proteins, lipids, carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. It is similar to fluorescent tagging.
Stains and dyes are frequently used in biology and medicine to highlight structures in biological tissues for viewing, often with the aid of different microscopes. Stains may be used to define and examine bulk tissues (highlighting, for example, muscle fibers or connective tissue), cell populations (classifying different blood cells, for instance), or organelles within individual cells.
Biological staining is also used to mark cells in flow cytometry, and to flag proteins or nucleic acids in gel electrophoresis.
Staining is not limited to biological materials, it can also be used to study the morphology of other materials for example the lamellar structures of semicrystalline polymers or the domain structures of block copolymers.
No comments:
Post a Comment